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Abstract

Soil hydraulic parameters (SHP) play a crucial role controlling the spatiotemporal
distribution of water in the soil-plant continuum and thus affect water availability
for crops. To provide reliable information on the SHP at different scales, measure-
ment techniques with a good spatial resolution and low labor costs are required.
In this study, we used crosshole ground penetrating radar (GPR)-derived soil water
contents (SWCs) measured along horizontal rhizotubes under a controlled experi-
mental test site cropped with winter wheat to estimate the unimodal and dual-porosity
soil hydraulic characteristics with different soil layer setups. Therefore, sequential
inversion of the GPR-derived SWCs was performed using the hydrological model
HYDRUS-1D, whereby the SWC data were either averaged prior inversion or used
in a spatially distributed way. To analyze if the time-lapse gathered GPR data contain
enough information to estimate the SHP, additional synthetic studies were performed
increasing the data resolution to daily GPR measurements. The results showed that
the time-lapse data contained enough information to estimate the SHP accurately.
Additionally, spatially distributed soil hydraulic characteristics differed from the
one estimated based on averaged SWCs derived from spatially distributed GPR
data. Finally, we derived spatially resolved SHP, which can be used for 3D process

rhizosphere processes and root—soil interaction modeling.

Plain Language Summary
This study explores the use of ground penetrating radar (GPR) to estimate soil
hydraulic parameters (SHP), which are crucial for understanding water distribution

in soil and its availability to crops. GPR is used to measure soil water content along

Abbreviations: AICc, corrected Akaike Information Criteria; EMI, electromagnetic induction; ERT, electrical resistivity tomography; FC, field capacity;

GPR, ground penetrating radar; HCC, hydraulic conductivity characteristics; LAI, leaf area index; MR, minirhizotron; PAW, plant available water; PWP,

permanent wilting point; RMSE, root mean square error; SHP, soil hydraulic parameters; SSR, sum of squared residuals; SWC, soil water content; SWR, soil

water retention; ZOP, zero-offset-profiling.
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1 | INTRODUCTION

Understanding the hydraulic processes within the vadose zone
is important for various applications including environmental
studies, ecosystem science, agriculture, soil science, mete-
orology, and hydrology. To investigate the wide range of
processes that influence the hydrological response between
the subsurface and the atmosphere, it is necessary to observe
the hydrological systems at different scales (Vereecken et al.,
2008, 2022). For example, small-scale modeling of rhizo-
sphere processes and root—soil interactions requires infor-
mation on the processes and parameters at the point- to
rhizosphere(pedon)-scale (Schnepf et al., 2022), whereas
Land-surface or Earth system models used for ecosystem
quantification and prediction require information at the field
to regional scale (Looy et al., 2017; Simmer et al., 2015;
Vereecken et al., 2016). To supply the models with appro-
priate input, methods are therefore needed to provide soil
parameters at different scales. When hydrological dynamics
are of primary concern, the soil water retention (SWR) and
hydraulic conductivity characteristics (HCC) must be known,
whereby the soil hydraulic parameters (SHP) are convention-
ally derived either directly or indirectly. Direct methods are
mainly based on laboratory experiments, which are costly and
labor intensive (Durner & Lipsius, 2005). In general, lab-
oratory measurements of hydrological dynamics (SWR and
HCC) are based on a variety of techniques using small-scale
soil columns of a few cm? (typically 100-300 cm?) in volume.
In the field, SHP can also be estimated by the use of in situ
soil sensors such as matric potential and SWC sensors, but this
approach is limited by the small sensing volume of those sen-
sors and the transferability of the results to the pedon scale,
as at the pedon scale a different representative elementary
volume might be present compared to those measured by the
small-scale sensors. To acquire information on a plot to field
scale, it is common practice to repeat the small-scale point
measurements (usually by taking undisturbed samples for lab-
oratory measurements) for several locations and to upscale the
laboratory hydraulic parameters to the entire field site. The

horizontal tubes in a winter wheat field. They then used these data to estimate soil
hydraulic characteristics using different soil layer and hydraulics setups. The key
findings were: inverting time-lapse GPR data can estimate SHP, the method allowed
for the derivation of spatially resolved SHP, and spatially distributed soil hydraulic
characteristics differed from those estimated using averaged soil water content. These
findings suggest that GPR can be an effective tool for measuring SHP with good
spatial resolution and lower labor costs. The resulting spatially resolved parameters
can be valuable for modeling 3D rhizosphere processes and root—soil interactions,

potentially improving our understanding of crop water availability and management.

same might hold for the use of soil sensors used, for exam-
ple, in sensor networks (e.g., Bogena et al., 2007). Although,
a detailed vertical representation of the heterogeneous soil can
be mapped at the point locations (often done during sampling
or sensor installation), spatial distributions (laterally) between
the points and small-scale heterogeneities cannot be captured
(Kool et al., 1987).

Alternatively, geophysical methods have been widely used
to estimate SWCs at the field to plot scale and the SHP have
been estimated from those measurements over the last two
decades to fill the gap between point and plot to field scale.
Most popular geophysical techniques are electrical resistivity
tomography (ERT) (Brunet et al., 2010; Jayawickreme et al.,
2010; Michot et al., 2003; Samouélian et al., 2005), elec-
tromagnetic induction (EMI) (Altdorff et al., 2017; Brosten
et al., 2011; Corwin & Lesch, 2005; Doolittle & Brevik,
2014; Moghadas et al., 2017; Sheets & Hendrickx, 1995),
and ground penetrating radar (GPR) (Huisman et al., 2003;
Klotzsche et al., 2018). While ERT and EMI provide the
electrical conductivity as physical quantity, GPR is able to
provide both the dielectric permittivity and electrical conduc-
tivity. Using petrophysical relationships such as Archie’s law
(Archie, 1942) for electrical conductivity or Topp’s equation
for dielectric permittivity (Topp et al., 1980), both properties
can be related to soil water content (SWC).

Time-lapse geophysical datasets combined with sequen-
tial or coupled inversion approaches can be used as inputs to
estimate the soil hydraulic characteristics (SWR and HCC).
For the sequential inversion, the geophysical quantity such
as electrical conductivity or GPR travel time (related to rel-
ative dielectric permittivity) is first converted to SWC. In
the second step, these derived SWCs estimates are used in
an inversion to estimate the SHP using appropriate hydro-
logical models. This approach has been successfully applied
to obtain the SHP from ERT (Beaujean et al., 2014; Cam-
porese et al., 2015; Claes et al., 2020; Huisman et al.,
2010; Manoli et al., 2015; Pleasants et al., 2022, 2023).
Other successful studies have been performed with surface
(Busch et al., 2013) and crosshole GPR (Looms et al., 2008;
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Rucker & Ferré, 2004; Yu et al., 2021). The term “sequen-
tial inversion” as used by Yu et al. (2021) is not consistently
used in the literature. For example, Yeh and Simtéinek (2002)
used the term Level I data fusion, Doetsch et al. (2012),
Farmani et al. (2008), and Kemna et al. (2002) used no spe-
cific term for their inversion approach, whereas Beaujean
et al. (2014), Camporese et al. (2015), Claes et al. (2020),
Gonzalez-Quirds and Comte (2021), Hinnell et al. (2010), Irv-
ing and Singha (2010), and Pleasants et al. (2022, 2023) used
the term uncoupled hydrogeophysical inversion to describe
the same inversion approach. As the data are inverted sequen-
tially (e.g., geophysical signal to SWC first and those SWC
to soil hydraulic parameter second), we prefer the use of the
term sequential inversion.

A more complex inversion scheme is the coupled hydro-
geophysical inversion, where the geophysical information is
not converted to SWC prior to the inversion but used directly
as information in the geophysical inversion process (Hinnell
et al., 2010). In general, the coupled inversion can overcome
potential errors introduced by the geophysical inversion, and,
therefore, this inversion scheme can be more reliable. On
the other hand, any error introduced by the choice of the
petrophysical transformation (e.g., from SWC to dielectrical
permittivity) will be still existing in the coupled inversion
approach. Additionally, any shortcomings in the hydrologi-
cal model, such as wrong process representation, will also
propagate into the results of the coupled inversion. Finally,
as some coupled inversion schemes require state-of-the-art
hydrological and geophysical models, both of which are often
computationally demanding, the computational requirements
are increased in contrast to the sequential inversion approach
(Yu et al., 2021). Coupled inversions have been performed
by Mboh et al. (2011), Kuhl et al. (2018), and Tran et al.
(2016) for ERT and by Yu et al. (2021) for GPR. Yu et al.
(2021) compared the performance and the reliability of both
inversion approaches for GPR data acquired during an infiltra-
tion experiment. It was observed that in the presence of fast
dynamics caused by infiltration or heavy rainfall, a coupled
inversion should be considered, while for long-term investi-
gations covering entire seasons, a sequential inversion can be
equally efficient.

Even though most geophysical techniques can determine
the SWC in either two dimensions (Cassiani et al., 2012;
Klotzsche et al., 2019; Larm et al., 2024) or even three-
dimensions (Beff et al., 2012; Koestel et al., 2008), the SHP
were primarily estimated in one dimension (e.g., Busch et al.,
2013; Jadoon et al., 2012). To our knowledge, a two- or three-
dimensional estimation of the soil hydraulic characteristics
(SWR and HCC), or more precisely of the horizontal spatially
distributed SHP describing the soil hydraulic characteristics
for multiple soil layers at high resolution of only a few cen-
timeters, based on geophysical field data, has yet not been
performed.
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Core Ideas

* 1D and semi-3D soil hydraulic parameters from
ground penetrating radar (GPR) using sequential
inversion were derived.

* The GPR-derived soil water contents with a hydro-
logical model were combined.

* Parameters for crop growth studies and their spatial
variability were obtained.

Especially, for small-scale field trials such as those used
in breeding and fertilization experiments, the small-scale het-
erogeneity of the underlying soil might be significant for
both analysis and the modeling processes involved in crop
growth (Lynch, 2007). Hereby, it is established that water and
nutrient uptake by the plants through their root system is heav-
ily reliant on the current water and nutrient availability in
the small-scale volume surrounding the roots (rhizosphere),
where even small changes can significantly affect the crop
performance (Bauke et al., 2022; Landl et al., 2019; Schnepf
et al., 2022). In addition, biochemical processes like green-
house gas (GHG) formation often depend on the conditions
of designated hotspots (e.g., Kravchenko et al., 2017). There-
fore, the knowledge of the two- or three-dimensional states of
the soil (e.g., water content and matric potential) is important,
and these information can generally be predicted by spatially
resolved models. Additionally, the estimated SHP can be used
to derive secondary soil characteristics, such as field capac-
ity (FC), permanent wilting point (PWP), and plant available
water (PAW). PAW describes potential availability of water
in the root zone for transpiration, and, hence, is an impor-
tant parameter to describe crop growth and productivity of
both rain-fed and irrigated crops. PAW can also be used to
estimate irrigation needs during drought periods, and, there-
fore, can help in decreasing water and energy consumption
required for irrigation and be beneficial to inform soil water
management decisions (Amsili et al., 2024; Poggio et al.,
2010). In comparison to mean field information of the soil
hydraulic characteristics, the spatial knowledge can be also
beneficial to inform three-dimensional agroecosystem mod-
els across different scales as stated by Vereecken et al. (2022)
and Vanderborght et al. (2023).

The objective of this study was to estimate the semi-3D
representation of the SHP, which is derived from horizontal
one-dimensional GPR-derived SWC planes measured within
horizontal boreholes (rhizotubes) across various depth within
a minirhizotron (MR) facility. Therefore, soil characteris-
tics across a controlled experimental test site cropped with
winter wheat, providing detailed information about a soil
volume with the dimensions 3.0 by 0.75 by 1.2 m (length,
width, and depth). To achieve this, we utilized a sequential
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(a) Minirhizotron facility locations

Vertical Position

FIGURE 1

(a) Aerial overview of the minirhizotron (MR) facilities in Selhausen, Germany, and a map of the location in Germany. (b) Birds

view of the plots and access trench. (c) Photo of the soil layers for the lower terrace (R; ) MR facility and (d) schematic illustration of a plot within

the minirhizotron facility and the zero-offset profiling ground penetrating radar (GPR) measurement and root imaging setup. Adapted from Lirm

et al. (2024). TERENO, TERrestrial ENvironmental Observatories.

hydrogeophysical inversion and time-lapse horizontal cross-
hole GPR-derived SWC measurements. The study was per-
formed in two steps: first, the SWC gathered by GPR were
horizontal averaged and inverted; second, the individual GPR
derived SWCs along the rhizotubes (N = 61) were inverted
and compared to the averaged one to analyze the potential
of inverting spatially distributed SHP. Additionally, different
synthetic studies were performed to analyze first whether the
data density gathered by GPR is adequate to reliable esti-
mate the SHP and second, whether the sequential inversion
is applicable under natural boundary conditions and if a more
demanding coupled inversion scheme might be necessary.

2 | MATERIALS AND METHODS

2.1 | Data acquired at the MR facility
Selhausen

To parameterize the hydrological model for this study, a
comprehensive and detailed dataset was required. Therefore,
we used data measured at one MR facility as described by
Léarm et al. (2023) at the Selhausen test site (Figure la)
located within the TERENO (TERrestrial ENvironmen-

tal Observatories) Eifel-Lower Rhine observatory in North
Rhine-Westphalia, Germany (Bogena et al., 2018; Piitz et al.,
2016). At this site, two identically constructed MR facili-
ties were present, situated within different river sediments of
the Rur river catchment (Bogena et al., 2018; Brogi et al.,
2019; Weihermiiller et al., 2007). The river sediments resulted
in contrasting soil conditions, where at the upper terrace
(Ryr), MR facility was located in a gravely, partly stony,
and silty sand with skeleton contents larger 50%, whereas
the lower terrace (R;1) MR facility was located in a silty,
sandy, and slightly gravely (<5% in skeleton) loess developed
from eolian deposits of the Pleistocene and characterized as a
Cutanic Luvisol (Ruptic, Siltic) (Bauer et al., 2011) based on
the World Reference Base for Soil Resources (IUSS Work-
ing Group WRB, 2007). For this study, data from the R;t
MR facility were used. The soil contained 17% clay, 70%
silt, and 13% sand as reported by Weihermiiller et al. (2007).
The soil comprised two distinct layers, namely, the topsoil or
plow layer that spans from 0 to 30 cm and the subsoil located
below (Figure 1c). For further details regarding the construc-
tion and setup of the MR facilities, we refer to the works by Cai
etal. (2016) and Larm et al. (2023). The MR facility accom-
modated three different field plots (see Figure 1b) allowing
different agricultural treatments. In the years studied here, plot
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TABLE 1
crop growing season 2016.

Overview crop management and measurements for the
Crop cultivar Winter wheat (cv. Ambello)

October 26, 2015

June 3, 2016

July 26, 2016

20 (from March 30 to August 8, 2016)

22 (from November 16, 2015, to July
22,2016)

20 (from December 17 to July 22,
2016)

Sowing date
Flowering date
Harvest date

GPR measurements

Root measurements

LAI measurements

Abbreviations: GPR, ground penetrating radar; LAI leaf area index.

1 was used as a rain-out shelter to mimic dryer conditions,
plot 2 was left under natural/rain-fed conditions, and plot 3
was irrigated. Our investigation aimed to observe the effects
of natural conditions, and, therefore, we focused on the center
plot 2 of the Ryt MR facility (Figure 1b). Within this plot,
three sets of horizontal rhizotubes with six depths ranging
between 0.1 and 1.2 m and a horizontal separation of 0.75
m between the rhizotubes were available for measurements
(Figure 1d). The GPR and root image (see details below) mea-
surements were performed in these rhizotubes, which can be
accessed from a belowground access trench (Figure 1b). The
GPR dielectric permittivity data gathered have been published
as part of a data paper by Larm et al. (2023).

The field dataset was acquired during the crop growing
season 2016 under winter wheat (cultivar Ambello) culti-
vation (Table 1). Crop management including pest control
and fertilization were performed in compliance with regional
standards. The wheat was sown with a seeding density of
300-320 grains per m?> at a row separation of 12 cm per-
pendicular to the direction of the rhizotubes. The climatic
variables used were obtained from the TERENO weather
station (SE_BK_002) located approximately 15 m away
(Figure 1a). The climatic data were measured in 10-min inter-
vals and the potential grass evapotranspiration (ET,) was
derived according to FAO Irrigation and drainage paper 56
(Allen et al., 1998) as daily values. Climatic data (precipita-
tion and ET ;) were used for the forcing of the soil hydrological
model. Details of the calculation and gap filling of the poten-
tial grass evapotranspiration are described by Graf et al.
(2020) and Rahmati et al. (2020).

The maximum rooting depth for various measurement
dates was determined from available total root length values
obtained from root image data captured using an MR camera
(Bartz Technology Corporation) inserted inside the rhizo-
tubes. The images were analyzed using an automatic image
analysis pipeline developed by Bauer et al. (2022). Addition-
ally, the leaf area index (LAI) was regularly measured during
the vegetation period using a plant canopy analyzer (LIA-220,
LI-COR Inc.).

2.2 | GPR-derived SWCs

GPR data were obtained through crosshole zero-offset-
profiling (ZOP), wherein the transmitting antenna (Tx) and
the receiving antenna (Rx) were placed in adjacent rhizo-
tubes at the same depth. The measurements were taken using
a 200 MHz PulseEKKO System from Sensors & Software on
20 measurement days during the vegetation period of winter
wheat (see Table 1). In the following, a short description of
data gathering and processing is provided.

The antennae were moved in parallel along the length
of neighboring rhizotube with a 0.05 m measurement spac-
ing. The standardized processing of crosshole GPR-ZOP data
involved three steps: (1) de-wow filtering, (2) time-zero cor-
rection, and (3) detection of the first arrival time/first break
to estimate the travel time for each measurement point (for
further details, refer to Klotzsche et al. [2019]). The velocity
of the electromagnetic wave was determined by utilizing the
known distance of 0.75 m between the rhizotubes along with
the estimated travel time from each ZOP measurement loca-
tion. The calculated EM wave velocity, v, was converted into
relative dielectric permittivity ¢, (-) using

e =(4). ()

where ¢ indicates the speed of light (m s~!). Considering
appropriate petrophysical relationships or empirical equa-
tions, the volumetric SWC 6 (cm® cm™3) can be derived
from the relative dielectric permittivity &, (Huisman et al.,
2003; Steelman et al., 2011). According to Klotzsche et al.
(2019), the GPR-derived SWC from the petrophysical rela-
tionships Complex Refractive Index Model (Roth et al., 1990)
and Topp’s equation (Topp et al., 1980) were similar for the
soil, at the Ry 1. Since Topp’s equation does not require addi-
tional information on soil properties such as porosity, Topp’s
equation was finally used for the conversion of the dielectric
permittivity to volumetric SWC.

0=-53 x1072+2.92x 10"%, — 5.5 x 107 *¢?

+43%x107%. )

The GPR-derived SWC values at a depth of 0.1 m in
the uppermost rhizotube produced unrealistically low SWC
results due to interference from critically refracted air and
direct waves (Klotzsche et al., 2016, 2019). Thus, these values
were omitted from the study. Moreover, data gathered at either
ends of the 7-m rhizotubes were excluded from the analysis,
as they were affected by the access trench and soil sensors
installed at one side of the facility and an excavation trench
needed to install the rhizotron tubes at the other end of the
MR facility. Consequently, only data within the range of 3—6
m from the access trench were included. This resulted in 61

85U80| 7 SUoWWIOD aAITeaID 8qed!|dde sy Aq peusenob afe saolke VO ‘8sn JO Sajnu 1o} Areiq 1T 8UlUO AB|1M UO (SUOIPUCO-PUB-SWLS/I0D A3 | 1M AReIq 1 U UO//:SdNY) SUONIPUOD pue SWie | 8Y18eS *[7202Z/2T/0z] Uo Ariqi7auljuo A8 |im eiueD yoessay HAWo ydine winnuezsbunydsiod Aq 68£0Z 2 [2AZ00T 0T/10p/wod e 1M Ae.q 1 puljuo'ssssde//sdny woy pepeojumoq ‘T ‘SZ0Z ‘€99T6EST



LARM ET AL.

6 of 25 Vadose Zon

GPR-derived SWC values for each depth measured between
two rhizotubes installed per plot, which were combined to cre-
ate a semi-3D horizontal SWC depth plane. Alternatively, one
can use the mean SWC along each horizontal depth planes
(each pair of rhizotubes), which seems reasonable for win-
ter wheat because of its low crop row separation as suggested
by Klotzsche et al. (2019). During the measurement season,
a spectral electrical impedance tomography monitoring sys-
tem as described by Weigand et al. (2022) was additionally
installed between 5.5 and 6 m along the rhizotubes. Unfor-
tunately, this system interferes with the measured GPR data,
and, therefore, the data for this section within the depth of 0.2
m had to be disregarded as well.

2.3 | Soil hydrological modeling

The SHP were estimated from GPR-derived SWC using the
HYDRUS-1D software (§imﬁnek et al., 2013), which solves
the one-dimensional Richards (1931) equation for a partially
saturated, porous, and rigid medium:

2k (E)er]-s o

where ¢ is the time (days), z is the positive upward vertical
coordinate (cm), and K(h) is the unsaturated hydraulic con-
ductivity (cm day‘] ) as a function of the pressure head 4 (cm).
For the atmospheric conditions, daily inputs of precipitation
and potential grass evapotranspiration (ET,) were used. The
sink term S in Equation (3) determines the quantity of water
extracted from the soil through root water uptake. To charac-
terize root water uptake, we utilized the Feddes model (Feddes
et al., 1974) and adapted the Feddes root water uptake param-
eters from Wesseling (1991) for wheat vegetation. Therefore,
PO was set to 0 cm, POOPt to —1 cm, P2H to —5000 cm, P2L
to —9000 cm, and P3 to —16,000 cm. The simulation domain
reached a depth of 200 cm and included the plow layer (0-
30 cm) and a subsoil (Bt horizon) below. To better represent
the site conditions in the hydraulic model, we tested a two- and
three-layer model. For the three-layer model, we introduced
a new soil layer between 100- and 200-cm depth. All mod-
els were discretized using 303 nodes, with the node spacing
increasing with depth.

As the upper boundary condition, daily atmospheric condi-
tions with surface runoff were used. Daily precipitation was
distributed throughout the day using the sine function embed-
ded in HYDRUS-1D. To differentiate potential transpiration
70 from ET, during crop growth, we utilized Beers Law:

T, =ET, (1 — e~k X LAl )

where k. is the radiation extinction factor, which typically
ranges between 0.5 and 0.75 (here set to 0.625). Since FAO

56 calculated ET), is only valid for a grass reference, the 7|,
was adjusted during crop growth using K,. vales as a function
of LAI with

TK” =

=Ty x K, 5)

Thus, the crop coefficient (K,.) was set to 1 during the initial
growth stages and increased to a maximum of 2 at maximum
LAI during the flowering stage. K. then decreased to 1.2 at
harvest during the senescence period. The K. values for inter-
mediate periods were linearly interpolated as illustrated in
Figure 2.

The allowable minimum pressure head at the soil surface
(hCritA) was set at —15,000 cm, which results in a transition
of the upper boundary from flux to a fixed pressure head. For
the lower boundary, a predefined pressure head (cm), mea-
sured by tensiometers at a depth of 140 cm recorded close to
the MR facility, was used. To calculate the pressure heads for
the lower boundary of the simulation domain at 200 cm (total
simulation depth), a constant offset of 60 cm was added to the
values recorded at 140-cm depth assuming a linear decrease of
matrix potential between 140- and 200-cm depth. Two func-
tions were considered for describing the SWR and hydraulic
conductivity curve. The first is the unimodal or single poros-
ity Mualem—van-Genuchten (MvG) model (Mualem, 1976;
van Genuchten, 1980), referred to hereafter as the unimodal
model. The second is the bimodal or dual-porosity model
introduced by Durner (1994), referred to hereafter as the dual-
porosity model. In the case of a dual-porosity model, the SWR
curve is described by:

k
0(h) =0, +(0,—6,) ) ®;Se; ©®)
i=1

with
Se; = [L+ |a;h|"] ™™, 7

where 6, and 6 are the residual and the saturated water con-
tents (cm> cm™3), respectively, k is the order of porosity in
the soil system (here k = 1 for the unimodal and k£ = 2 for
dual-porosity model), Se is the effective saturation (-), w; is
the weighting factor Qlw; = 1). «; (cm™h), n; (-), and m; (-
) are the empirical parameters, whereby «; can be related to
the inverse of the air entry values and #n; to the width of the
pore size distribution, whereas m; is classically related to #;
bym; = 1—1/n,.

The relative soil hydraulic conductivity function K(h) is
given by Priesack and Durner (2006):

k 1/m; m;
)
K (h) =K, ) oSe, - ®)
i=1 zi=1 w;a;

r
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FIGURE 2 Crop coefficient K, over the crop growing season of winter wheat. Adapated from Pokorny (2019).
where K, (cm day~!) is the saturated hydraulic conductivity, 1 can be written as:
(-) is the tortuosity factor, and r is a shaping factor for the rela- GPR
. . .. . . 2
tive hydraulic conductivity function and set to r = 2 according MLayer E,]L Zj: 1 e (6mod ij — Bobsi, j) 1
to (Mualem, 1976). This dual-porosity model’s parametriza- CF = Z > X 5 )]
k=1 mod;

tion assumes two components in the soil: (1) the soil matrix
and (2) the macropores; unlike the unimodal model, which
has only the matrix. As most crop growth models still need
information on soil characteristics (FC, PWP, and PAW) to
compute the water dynamics (Jarvis et al., 2022), the FC was
calculated by determining the SWC at a pressure head of
pF 1.8 (equivalent to a height of 330 cm), while PAW was
calculated as the difference in SWC between FC and PWP,
defined at a pressure head of pF 4.2 (equivalent to a height of
15,000 cm) (Novék & Hlavacikova, 2018).

2.4 | Sequential inversion

To estimate the SHP of the MvG models (unimodal and dual-
porosity model), the Shuffled-Complex-Evolution algorithm
(SCE-UA) as described by Q. Y. Duan et al. (1993) and Q.
Duan et al. (1994) was used. The SCE-UA is a global search
routine that has been effectively utilized in hydrogeophysi-
cal inversion research conducted by Kuhl et al. (2018), Mboh
et al. (2011), Busch et al. (2013), and Yu et al. (2021). The
mismatch is calculated by using the squared sum of the dif-
ferences between modeled SWC 6,4, ; and observed SWC
Bops; ; per depth in the corresponding layer N and for the corre-
sponding measurement days (GPRy,y,). To normalize for the
different height of the SWCs measured at different depth, the
misfit was divided by the mean of the modeled SWC 6,4,
per measurement depth N. Finally, the mismatch was further
normalized by the number of measurement depths per layer
to account for the different total number of measurements in
each layer. Based on this, the cost function to be minimized

where CF is the normalized squared mean error, ny ., is the
number of modeled soil layers, 6, and 6,4 are the observed
GPR-derived and HYDRUS-1D modeled SWC, respectively.
The inversion was terminated, when the cost function did not
improve more than 0.01% within the last 10 inversion loops.
Except for 4, expert knowledge was utilized to choose the fea-
sible space for the parameter optimization for all parameters.
According to the study conducted by Peters et al. (2011), the
lower boundary of the feasible space was set to 4 = —2 to keep
the hydraulic conductivity function monotonically decreas-
ing. Finally, a model spin-up of 125 days was used to be
independent on the initial conditions of the soil profile (see
Figure 3a).

To find a hydrological model that best represents the water
flux dynamics with respect to number of soil layers and soil
hydraulic characteristics (unimodal vs. dual-porosity), four
different model setups were tested, namely, a two-layered
and a three-layered model with either unimodal or dual-
porosity soil hydraulic characteristics. An overview of the
averaged one-dimensional sequential inversion steps is shown
in Figure 4a. Therefore, the determination of a most suit-
able model to describe the data is necessary. We utilized the
corrected Akaike information criteria (A/Cc) (Burnham &
Anderson, 2004):

2nSHP (2nSHP + 1)
N = ngyp =1

AICc = N ln<%> + 2ngp +

[l

(10)
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FIGURE 3

Parameters for the sequential inversion with (a) daily precipitation (blue bars), reference grass evapotranspiration (red line), and the

black arrow indicates the spin-up period. (b) Leaf area index (LAI) (gray solid line) and the rooting depth (black dashed line). (c) Crop coefficient

(black dashed line) and rescaled potential transpiration (gray solid line). (d) Averaged ground penetrating radar (GPR)-derived soil water content
(SWC) (colored dashed lines). (e) Soil water potential (SWP) at 140-cm depth (black dots). The vertical solid black line indicates sowing date, the
vertical black dotted indicates flowering date, and vertical black dashed line indicates harvest date. The gray dashed frames indicate the GPR-derived

SWC, which are shown in more detail in Figure 7.

where N is the number of GPR-derived SWCs, ngyp is the
number of optimized SHP, and SSR is the sum of squared
residuals between measurements and model results. The AICc
is used (instead of the AIC, Akaike, 1974) since the ratio
between the number of GPR-derived SWCs and the number
of optimized SHP (N/ngyp) is smaller than 40 (Burnham &
Anderson, 2004). The model with the lowest AICc values is
deemed the best. Equation (10) demonstrates that the AICc’s
right-hand side penalizes the number of model parameters
used. The AICc is advantageous over other statistical mea-
sures as it can be used even for a small number of observations
N.

For estimating the resembled mean SWR functions of the
61 individual soil retention functions retrieved by the semi-
3D sequential inversion, SWC/pressure head pairs of each
individual of the 61 SWR functions were selected from full
saturation to dryness (total of 1.000.000 data pairs) and used
to fit a new set of SHP to those points (see Figure 5).

This procedure has been already applied by Montzka et al.
(2017). As for the estimation of the hydraulic conductiv-
ity function, additional parameters such as K, and A are
needed those have to be determined as well. As it is widely
accepted that K, and A can be directly averaged, those
parameters were averaged directly over the length of the
rhizotubes.

3 | RESULTS AND DISCUSSION

3.1 | Field dataset for hydrological modeling

The precipitation data shown in Figure 3a indicated sporadic
rain events, with fewer occurrences in October 2015 and mid-
May 2016, and a higher number of rainfall events in late May
and June. During this period, there were four events with rain-
fall over 10 mm per day within a 30-day span, and 8 days
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FIGURE 4

(a) Steps for the estimation of the averaged soil hydraulic parameters. (b) Steps for the estimation of the spatially distributed soil

hydraulic parameters. (c) Overall sequential inversion steps. AIC, Akaike information criteria; GPR, ground penetrating radar; SHP, soil hydraulic

parameters; SWC, soil water content; ZOP, zero-offset-profiling.

with over 10 mm of rainfall between October and mid-May.
Potential evapotranspiration was at its lowest during win-
ter, increasing in spring, and reaching its maximum during
summer.

Based on the data from the root images, where we con-
sidered the maximum rooting depth as the depth where the
first roots were detected in the root images at a given depth,
root growth was determined and plotted in Figure 3b. Based
on the root evolution, it became evident that the depth of
root growth progressively increased until it reached a plateau
during the flowering period. Since the rhizotubes were only
installed until a depth of 1.2 m, root observation was feasi-
ble only up to 1.2 m. Given that wheat is a crop known for
its deep-rooting nature (Thorup-Kristensen et al., 2009), we
extrapolated the rooting depth to a depth of 1.4 m, whereby the
slope of the growing curve over time was used for extrapolat-
ing. The LAI exhibited low values during the initial growing
stages but showed a significant increase from mid-March to
early May (refer Figure 3b). The LAI fluctuated around a

maximum between mid-May and early July, followed by a
decrease toward the end of the growing season. Both the
LAI and the rooting depth were considered to be zero after
the harvest date, assuming no root activity after removal of
the shoots. As described earlier, using Equations (4) and (5),
we adjusted the crop transpiration using a crop coefficient.
This crop coefficient was linearly interpolated, according to
Figure 2. The respective dates for changing the crop coef-
ficient were determined by the observed LAI pattern (see
Figure 3c).

First, we explored the averaged GPR-derived SWC (arith-
metic mean) values along the rhizotubes. This approach
allowed us to analyze how SWC changes over time and at dif-
ferent depths (Figure 3d). Generally, lowest averaged SWCs
were detected in the plow layer (0.2 m), with increasingly ele-
vated SWCs in deeper zones of the soil profile. Moreover, the
temporal variability decreased with increasing depth, as the
dynamics stem primarily from the surface atmospheric condi-
tions imposed, including evapotranspiration and precipitation.
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Estimation of the mean soil water retention function for the semi-3D sequential inversion
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FIGURE 5 Estimation of soil water retention functions for the semi-3D (three-dimensional) sequential inversion.

Furthermore, heavy rainfall in June around flowering caused
relatively high degree of saturation at 0.4-m depth. The aver-
aged GPR-derived SWC (Figure 3d) showed a clear response
to the precipitation and the evapotranspiration (Figure 3a).
An increase in GPR-derived SWC was observed, such as the
one on June 2 as a response to heavy rainfall. In contrast, a
decrease in GPR-derived SWC was observed during drought
events, such as on July 20. It is important to note that the
differences in SWC between drier and wetter periods are not
well expressed due to the fine-grained nature of the soil at the
R;1 MR facility, exhibiting a large water retention even for
extended dry periods during the summer month. Additionally,
the GPR-derived SWC indicated near saturation at the depth
of 1.2 m during the winter season, which are likely caused by
stagnant water and not by high water tables as historical water
table measurements in close vicinity of the facility indicated
groundwater fluctuations between 3 and 5 m as mentioned by
Jadoon et al. (2012).

The soil profile’s lower boundary could be studied by ana-
lyzing soil matric potential values taken at a depth of 1.4
m near the MR facility (see Figure 3e). Generally, seasonal
fluctuations occurred with noticeable soil matric poten-
tial increased during the winter months (October—February)
and notably decreased toward the summer months (March—
August), which reflected groundwater depletion and recharge
throughout the year.

3.2 | Averaged one-dimensional sequential
inversion

3.2.1 | Testing different hydrological model
setups

As a first step, the averaged GPR-derived SWCs along the
rhizotubes at each measurement depth were used in a sequen-
tial inversion, testing different model setups, namely, the
unimodal 2-layered model, the unimodal 3-layered model,
the dual-porosity 2-layered model, and the dual-porosity
3-layered model, respectively. The resulting SHP for the dif-
ferent model setups for the respective soil layers are given
in Table 2. While visually comparing the modeled SWCs
of the four optimized models (Figure 6), larger offsets dur-
ing the spin-up period were noticed. Since the soil profile
in the model needed to equilibrate to the atmospheric con-
ditions, these larger offsets were expected but vanished until
the date when first GPR measurements became available.
Additionally, larger differences in modeled SWC between the
individual models were found in the plow layer (between
April 28 and May 28, and after harvest July 27) and the low-
est depth of 1.2 m (more or less over the entire period after
April 28). This showed different responses of the four models
to the prescribed boundary conditions at the upper and lower
boundary, respectively.
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TABLE 2 Results for the 1D (one-dimensional) sequential inversion of the averaged ground penetrating radar (GPR)-derived soil water

contents (SWCs), with boundaries set in the SCE-UA (Shuffled-Complex-Evolution algorithm) optimization and the optimized SHP(soil hydraulic

parameters) values for the different models.

Lower Upper
boundary boundary

Plow 0, (cm® cm™3) 0 0.01

layer 0, (cm® cm™3) 0.25 0.45
a(cm™) 0.009 0.1
n(-) 1.1 3.0
K, (cm day™") 10 200
A(-) -2 10
W, () 0.85 1
a, (cm™!) 0.001 0.01
n, () 1.1 1.6
RMSE (cm™3 cm™3)
AICc ()

Subsoil 6, (cm® cm™?) 0 0.01

layerl g (cm3 cm™3) 03 0.45
a(cm™) 0.008 0.1
n (-) 1.1 3.0
K (cm day™!) 0.8 200
A0) - 10
@, (-) 0.85 1
a, em™) 0.001 0.01
n, () 1.1 1.6
RMSE (cm™ cm™)
AlCc (-)

Subsoil 6, (cm® cm™3) 0 0.01

layer2 g (cm3 cm?) 0.3 0.45
a(cm™) 0.008 0.1
n(-) 1.1 3.0
K,(cm day™") 0.8 200
A0) ) 10
@, (-) 0.85 1
a, (cm™) 0.001 0.01
n, () 1.1 1.6
RMSE (cm™3 cm™?)
AICc (-)

Number of optimized parameters
Overall RMSE (cm™3 cm™3)
Overall AICc (-)

SHP

Two-layered model Three-layered model
Unimodal Dual-porosity Unimodal Dual-porosity
0.002 0.009 0.004 0.01
0.25 0.275 0.25 0.276
0.0795 0.0998 0.0546 0.099
1.118 2.789 1.129 1.998
199.57 10.31 139.8 12.38
4.59 —-1.28 6.39 -1.15
- 0.861 - 0.851
- 0.0088 - 0.0091
- 1.445 - 1.382
0.034 0.0268 0.0345 0.0268
142 253 143 253
0.009 0.006 0.004 0.005
0.387 0.379 0.3927 0.366
0.0086 0.0299 0.013 0.0423
1.358 2.091 1.261 2.048
159.52 192.51 107.88 133.04
-0.6 —0.06 0.1723 —1.88
- 1 - 0.957
- 0.0061 - 0.0047
- 1.501 - 1.495
0.017 0.019 0.019 0.014
352 722 243 457

- - 0.005 0.004
- - 0.4 0.367
- - 0.01 0.0552
- - 1.166 1.964
- - 86.1778 156.67
- - 1.74 0.61

- - - 0.999
- - - 0.0015
- - - 1.372
- - 0.023 0.017
- - 127 236

12 18 18 27
0.033 0.033 0.035 0.032
1918 3115 3129 4910

Note: For the selection of the best model, the RMSE and AICc were calculated for each soil layer individually and over all depths.

Abbreviations: AICc, corrected Akaike information criteria; RMSE; root mean square error; SHP, soil hydraulic parameters.

For the plow layer, we noticed that the two dual-porosity
models showed minor differences between each other. On the
other hand, the unimodal models indicated a different mod-
eled SWCs, where the 2-layered model continuously showed

larger SWCs than the 3-layered model, with an increase in
the offset during the dry period in May with lower SWCs for
the 3-layereds model. Interestingly, around the harvest date,
we observed a noticeably higher SWC in the dual-porosity
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Averaged one-dimensional sequential inversion results

FIGURE 6 Results for the averaged
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one-dimensional (1D) sequential inversion. The
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models, and after the harvest, a significantly lower SWC
compared to those predicted by the two unimodal models.

When looking at the subsoil depths, we noticed the
differences between the individual models increased with
increasing depth. The two dual-porosity models showed sim-
ilar SWCs over the entire simulation period, whereas the
unimodal 3-layered model showed the lowest SWCs during
dry periods for all depth except at 1.2 m, where this model
generally showed higher SWCs compared to the 2-layered
cases. However, the lowest depth of 1.2 m showed a varying
trend: the unimodal models and the dual-porosity 2-layered
model predicted substantial differences in modeled SWC,
whereas the dual-porosity 3-layered modeled SWCs did not
change considerably throughout the modeling period.

When comparing the modeled and observed SWCs, it was
difficult to distinguish which model best represented the
observed SWCs over all depths as the modeled and observed
SWC showed a wide range of offsets. Overall, Figure 6
showed that none of the utilized models perfectly represented
the GPR-derived SWCs. A pattern of SWC underestimation
during spring (March—April) and overestimation at later times

was also evident. Furthermore, all models exhibited less tem-
poral SWC variability compared to the GPR-derived SWC,
although they effectively captured the high rainfall events at
all measurement depths.

Since these patterns and offsets made the visual compari-
son quite difficult, the AICc (Equation 10) and the root mean
square error (RMSE) were calculated for the different models
and soil layers individually and are listed in Table 2. As men-
tioned above, a low value in AICc indicated a good correlation
between the modeled and observed SWC while penalizing
a high number of optimized parameters. The unimodal 2-
layered model had the lowest AICc value of 1918, considering
the overall AICc for both layers (RMSE = 0.033 cm™ cm ™)
(Table 2), indicating that this model was the best in terms of
representing the measured SWCs and number fitted parame-
ters. The second-best model was the dual-porosity 2-layered
model, which had the same RMSE as the unimodal 2-layered
model but slightly larger AICc (AICc = 3115) due to a larger
number of fitted parameters. The unimodal 3-layered model
closely followed with an AIC of 3129 and also slightly larger
RMSE of 0.035 cm™ ¢cm™3. Finally, the worst model was the
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dual-porosity 3-layered model with an AICc of 4910 but with
the lowest RMSE of 0.032, respectively. Here, it must be noted
that the AICcs for the different models were relatively similar
for the dual-porosity 2-layered and unimodal 3-layered case,
whereby the RMSE differed with lower RMSE for the dual-
porosity 2-layered case associated also with lower RMSE
compared to the one for the dual-porosity 3-layered case. The
ambiguous information content of the RMSE became clearer
looking at the RMSE only to describe the goodness of fit to
the data, when we looked at the dual-porosity 3-layered case,
which showed the lowest RMSE of all cases but also the high-
est AICc due to large number of fitted parameters. Therefore,
not accounting for the complexity of the model to describe
the data (here the number of parameters fitted as done by the
AICc) and to base the decision on lowest RMSE only will lead
to a model selection, where the model complexity cannot be
justified by the relatively small decrease in RMSE. To identify
the most suitable model for further investigation (fitting the
semi-3D SHP) of our soil system, we employed the following
argumentation line: (1) the unimodal 3-layered model was not
selected as it showed highest RMSE and second-worst AICc
during the averaged 1D sequential inversion procedure and
(2) the unimodal 2-layered model was not selected as per def-
inition a dual-porosity model can also describe unimodal soil
characteristics by setting the weighting factor w2 to 1. This
flexibility of the dual-porosity model could be already seen
in the fitting results of the averaged 1D sequential inversion,
where the dual-porosity model for the 2-layered model in the
subsoil yielded an w2 of 1, indicating unimodality. Finally, we
rejected the 3-layered dual-porosity model, since the AICc for
the averaged 1D sequential inversion was considerably larger
than those of the other cases. Therefore, we selected the 2-
layered dual-porosity model as most suitable for fitting the
distributed semi-3D SHPs.

3.2.2 | Synthetic GPR modeling using gprMax

During heavy rainfall events or irrigation, sharp gradients
in the SWC profile can occur, leading to incorrect estima-
tions of GPR-derived SWC when the first arrival time (first
break) analysis is used (Yu et al., 2021). To assess if this
occurred for the natural field climatic conditions of our study,
a synthetic modeling study was carried out utilizing the three-
dimensional finite difference time domain software gprMax
(Warren et al., 2016). For the simulation, we used the mod-
eled SWC profiles acquired for the averaged one-dimensional
sequential inversion using the dual-porosity 2-layered model
(refer to Table 2 and Figure 6). From these modeled SWC
profiles, we computed the distribution of relative dielectric
permittivity throughout the entire depth of the soil profile in
0.02 m increments for the 20 days in which GPR data were
collected in the field. A replica of the MR facility was set
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up using gprMax, where for each of the five measurement
depths, a pair of rhizotubes with a spacing of 0.75 m between
the receiver and transmitter antennae was incorporated into
the model and used to compute the EM field components
at the antennae locations. The soil’s electrical conductivity
o remained constant at 10 mS m~!, while the source pulse
was set to a Ricker wavelet centered at 200 MHz. The EM
waves generated from the calculations were processed sim-
ilar to the one used for field measurements. The first break
was determined (see Figure 7a), and from this, the EM travel
time, EM wave velocity, relative dielectric permittivity, and
finally the SWC were calculated. This entire process was
repeated for each depth at each timestep. The SWC profiles
resulting from this processing were finally compared to both
the GPR-derived SWC measurements and the modeled SWC
profiles employing HYDRUS-1D (see Figure 7b). Compar-
ing the SWC for the four selected dates, one could see that
the SWC simulated by the use of gprMax correlated with the
modeled SWC profile especially at greater depth between 0.6
and 1.2 m, indicating the suitability of the first arrival time
approach for estimating GPR-derived SWC. At depths of 0.2
and 0.4 m, there is an observable offset between the mod-
eled SWC profile and SWC simulated in gprMax. This may
be attributed to the difference in SWC between the plow and
subsoil layer, resulting in notable differences in SWC values
over short distances, whereby the differences were still quite
small. Furthermore, those differences might be also caused by
the fact that the measurements were acquired near the inter-
face between the air and soil and might therefore be affected
by the critically refracted air and direct waves, as mentioned
earlier. Looking at all measurement dates (not all data shown
here), the infiltration water after rainfall events did not cre-
ate considerably sharp gradients in SWC that could impact
SWC estimation from picking the first arrival. This exer-
cise therefore demonstrates that the first arrival time analysis
was suitable to estimate the modeled SWC and that a full
waveform coupled inversion as done by Yu et al. (2021).

3.2.3 | Synthetic one-dimensional field
study—Different measurement intervals

The second potential drawback to be discussed was the ade-
quacy of the number of GPR-derived SWC measurements
necessary to accurately estimate the SHP. As indicated ear-
lier, our field experiments contained 20 measurements over
a period of 6 months. As such, it is uncertain whether this
data density was enough to constrain the sequential inversion.
Therefore, two sets of synthetic GPR-derived SWC measure-
ments were created. The first one, where the 20 available
field experiment measurement days were selected and a sec-
ond one, where daily measurements over a period of 6 months
(323 days) were selected from the HYDRUS-1D time series,
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(a) GPR traces for different depths on the April 28 (b) Comparison of the different soil water contents
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FIGURE 7 (a) Synthetic ground penetrating radar (GPR) traces modeled using gprMax (Warren et al., 2016) for the different depths for the

April 28, 2016, where the black lines indicate the simulated electromagnetic (EM) waves per depths and the blue marks represent the first break (FB)

of the simulated EM waves. (b) SWC (soil water content) profile comparison for four exemplary GPR days (April 28, June 2, June 13, and June 20 in

2016). The blues line presents the modeled SWC profile resulting from the averaged one-dimensional (1D) sequential inversion, the red crosses

indicated the gprMax-derived SWC, and the green circles represent the measured GPR-derived SWC.

using the SHP in Table 2 for the unimodal 2-layered model,
as “original” input SHP. In this study, we used the simplest
model (unimodal 2-layered), which contained lowest num-
ber of parameters and also adjusted the search range (feasible
parameter space) for the optimization, to keep computation
time low. For each of the two scenarios (20 measurement
days or daily measurements), a sequential inversion was per-
formed and the resulting SHP and the respective coefficient
of determination R” are shown in Table A 1. For both scenar-
ios, the sequential inversion returned the “original” input SHP
used in the forward model. Hereby, the model fed with the
20 GPR measurements days taken from the field experiment
resulted in R? of 1, while the model based on daily SWC inputs
resulted in R? of 1 also. Therefore, it can be concluded that the
20 available measurement days provide adequate information
to constrain the sequential inversion. For more details, about
the results of this synthetic study, we refer to Figure A1 and
Table Al.

3.3 | Semi-3D sequential inversion

To investigate the horizontal spatial variability of the SHP
along the rhizotubes, the GPR-derived SWCs for each mea-
surement day could be visualized and examined over time for
all 61 measurement positions. Figure 8 displays the horizon-
tal depth planes of three selected different measurement dates
(April 28, June 20, and August 1). Typically, the lowest SWCs
were detected in the plow layer (0.2 m), while the deeper soil
profile showed systematically higher values. Temporal vari-

ability decreased with increasing depth due to atmospheric
conditions at the surface. Patches of GPR-derived SWC vari-
ability demonstrated that SWCs are heterogeneous, leading to
the hypothesis that the underlying soil characteristics are spa-
tially variable (Figure 8). To explore the spatial variability
of the SHP, 61 individual sequential inversions were per-
formed along the length of the rhizotubes for each depth.
Based on the previous sequential inversion, using the aver-
aged GPR-derived SWC, the 2-layered setup, consisting of a
plow (topsoil) and a subsoil layer, and a dual-porosity model
was used. Since bimodality may exist within the soil hydraulic
characteristics, excluding dual porosity a priori during inver-
sion was not advised. Additionally, the dual-porosity function
allowed for flexibility in yielding unimodal characteristic if
the weighting factor w2 is close to or equals 1 (refer to Equa-
tion 10). After inverting the SHPs to all GPR-derived SWCs
for all individual positions within the rhizotubes located in the
plow and subsoil layers, the SWR and hydraulic conductivity
curves were plotted in Figure 9. As depicted in the figure, we
observed a noticeable dual-porosity pattern in the wet range
for the plow layer (Figure 9a,c), while the soil characteris-
tics for the subsoil layer displayed a more unimodal pattern
(Figure 9b.d). The dual-porosity nature of the plow layer and
the unimodal nature of the subsoil layer were also observed in
the 1D inversion.

To explore the dual-porosity nature of both soil layers in
more detail, a histogram of the weighting factor w2 was plot-
ted in Figure 10. For the plow layer, there was almost no
spread in the weighting factor @2, with 59 of the models hav-
ing an w2 between 0.85 and 0.86, and only two between 0.86
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Semi-3D GPR-derived soil water content
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FIGURE 8 Ground penetrating radar (GPR)-derived soil water content (SWC) along the rhizotubes for three selected dates during the crop

growing season: (a) April 28, (b) June 20, and (c) August 1 in 2016.

and 0.87. Hence, the plow layer showed a bimodality of at
least 15%. In contrast, for the subsoil layer, @2 was much
more variable, ranging from 0.88 to 1, and was highly skewed
toward 1, indicating low bimodality to near unimodality. The
estimated SHP for the 61 positions along the rhizotubes are
shown in Figure 11, where the subfigure include not only
the estimated parameter for each individual GPR measure-
ment positions but also the averaged SHP calculated from the
individually optimized parameters along the rhizotubes (here
denoted as mean semi-3D results, see Figure 11), as well as the
results of the sequential inversion based on the averaged GPR-
derived SWCs along the rhizotubes (here denoted as averaged
1D results).

For the plow layer, there was a deterministic trend present
for the soil matrix parameters a, and n, but also a trend in 6
(see Figure 11a). For 6, lower values were detectable in the
first 3.4 m, peaking after between 3.4 and 3.8 m and leveled
out at levels of the average 6, until 5.2 m. Beyond that, the 6,
again increased. For a,, the values were generally below the
inversion results based on the averaged GPR-derived SWC
between 3 and ~4.0 m. In contrast, between ~4 and 6 m,
the values were above this averaged GPR-derived SWC. This
trend was reversed for n,, suggesting a negative correlation
between matrix @ and n as already found by Zhang et al.
(2022) for laboratory derived data. A similar trend could be
seen for the subsoil layer in Figure 11b.

To investigate this further, Figure 12 shows the negative
correlation between a, and 1, for both soil layers. The R> gave
values of 0.4 and 0.53 for the plow and subsoil layer, respec-
tively. When analyzing K, and A within the plow layer, we
could notice similar patterns along the locations of the rhizo-
tubes, where high values for both parameters above the mean
of the semi-3D results, between 3.0 and 3.7 m, were present,
which then decreased below the mean toward 5.1 m. Between

5.1 and 6.0 m, a slight increase was present toward values
around the mean. This similar trend of K, and 4 suggested a
correlation between those parameters (see Figure B1). Gener-
ally spoken, increasing K, while decreasing A will lead to more
or less the same conductivity function as decreasing K while
increasing A, and therefore, a correlation can be assumed. For
all other parameters estimated in for the plow layer (6., ay,
and n,), no clear trend was visible.

In contrast to the plow layer, a clear trend along the rhi-
zotube measurement positions for the estimated 6, could be
found in the subsoil layer (Figure 11b), where the values
between 3 and 4.4 m (roughly at the center of the rhizo-
tube) were higher than 0.37 cm?® cm~> and decreased steadily
toward the end of the rhizotube. The remaining parameters
0, K, 4, a;, and ny) did not follow a clear trend, and only
for w,, ay, and n,, high variability in the first half of the
rhizotube was noticeable, which was smaller for the sec-
ond half along the tube. Finally, there was no correlation
between K, and A compared what was present in the plow
layer.

In a final step, we compared the effective (mean) SHPs for
the MR facility. On the one hand, a set of SHPs was esti-
mated based on the averaged one-dimensional GPR-derived
SWCs (averaged 1D) and on the other hand, the SHPs were
estimated from ensembled mean SWR pairs (mean semi 3D)
of the individual functions, as mentioned above and described
in Figure 5. The offset and the direction of the offset between
the different values (averaged 1D and mean semi-1D) was
quite variable. In some cases, the values were very similar,
for example, 6, and n, within the plow layer (see Figure 11),
whereas within the subsoil layer, the values between the dif-
ferent averaged SHP were quite large, for n; and n, but also
for w2. Looking at all averaged 1D and mean semi-3D SHP,
no clear trend could be detected.
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Soil water retention and absolute hydraulic conductivity function for the semi-3D sequential inversion
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FIGURE 9 Soil water retention (a and b) and relative hydraulic conductivity function (c and d) for the plow and subsoil layer, respectively. The

different colors represent the individual results along the rhizotubes, where the blue colors are the results closest to the access trench. The black

dashed line and the black solid line indicate the results of the averaged one-dimensional (1D) sequential inversion results and the mean of semi-3D

(three-dimensional) sequential inversion results, respectively. The vertical lines in the soil water retention functions (a and b) represent the pressure

head and the corresponding soil water content values at field capacity (FC) and permanent wilting point (PWP). The horizontal lines in the soil water

retention functions (a and b) represent the GPR-SWC (ground penetrating radar-soil water content) range for the measurements.

Information on the soil characteristics FC, PWP, and PAW
is often required in crop growth studies (Kersebaum et al.,
2015). The variability of these parameters can significantly
affect plant performance under conditions such as water stress
or nutrient deficiency and, consequently, crop productivity
including yield (Aggarwal, 1995; Van Keulen et al., 1987).
The SWC at FC, PWP, and PAW was individually calculated
for each GPR-derived SWC measurement position along the
rhizotubes, as shown in Figure 13. Furthermore, we incorpo-

rated the SWC at FC, PWP, and PAW obtained through the
inversion of the averaged 1D GPR-derived SWC and the mean
semi-3D inversion results. The SWC at PWP (Figure 13b)
and PAW (Figure 13c¢) indicated a more or less symmetrical
distribution in the plow layer, while for the FC (Figure 13a)
also, a symmetrical distribution in the subsoil layer was visi-
ble. However, the remaining parameters were skewed toward
the lower SWC range. Furthermore, the soil characteristics
of individual layers could be compared. The SWC at FC is

85UB017 SUOLIWIOD A IERID) 3[qedlidde 3 Aq peuob 812 DR VO ‘88N JO S3|NJ 10} ARRIqITBUIUO 481 UO (SUORIPUOD-PUE-SLUBH 0D A3 1M ARe1q | pu1 UO//SANY) SUORIPUOD PUe SWIS L 83 385 *[7Z02/2T/02] U0 A%igiTauliuo AB|IM “ejue) UoIeesey HAWS UdIINe wniauwezsbunyasiod Aq 68€02 2 2//Z00T 0T/10p/u0d" A]1m-Areiq1jpul|uo ssesde//sdny o) popeojumod ‘T ‘G202 ‘€99T6EST



LARM ET AL.

FIGURE 10 Histogram of the weighting

factor w, for (a) the plow layer and (b) the (a) Plow layer
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FIGURE 11

(a and b) The semi-3D (three-dimensional) sequential inversion results for the plow layer and the subsoil layer, respectively. The

individual subplots indicate the results along the rhizotube for the soil hydraulic parameters. The black solid lines show the individual results along

the rhizotubes, the red dashed line indicates the mean of the semi-3D results, and the green solid line indicates the averaged one-dimensional (1D)

inversion results. Note, for some SHP, the mean values were out of range to show values along the rhizotubes; hence, only the corresponding values

are indicated.
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FIGURE 12 Correlation between a, and n, for (a) plow layer and (b) the subsoil layer based on the inversion along the 61 locations within

each rhizotube. RMSE; root mean square error.
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FIGURE 13 Boxplot for the semi-3D (three-dimensional) sequential inversion results for the soil water content at field capacity (a), permanent

wilting point (b), and plant available water (c). The green solid line indicates the values based on averaged one-dimensional (1D) sequential inversion

results and the dark red dashed line indicates the mean semi-3D inversion result. The red solid line shows the median from the semi-3D inversion

results, the blue box the 25th and 75th percentile, the black whiskers the most extreme data points not considered as outliers, and stars the outliers.

lower for the plow layer and exhibited slightly more variabil-
ity in the subsoil layer. The lower FC for the plow layer was
consistent with lower saturated water content 6, (porosity) of
this layer, likely caused by repeated tillage and destruction
of soil structure. Conversely, the SWC at PWP was slightly
higher and more variable for the plow layer. Three outliers
were observed for the subsoil layer, which were very differ-
ent from the other values, while there was only one outlier
at the lower end of the range for the plow layer. The SWC
at PAW in the plow layer was lower compared to that of
the subsoil layer. Furthermore, there was a higher variabil-

ity in the subsoil layer, as indicated by a wider range between
the 25th and 75th percentiles. When comparing the boxplot
median to the results from the averaged 1D GPR-derived for
the PAW, it was evident that the inversion of the averaged one-
dimensional GPR-derived SWC yielded a PAW value outside
the quartiles for the subsoil layer. The same also held for
the FC, indicating that even small differences in the SHP as
shown in Figure 11 might lead to some substantial difference
in the derived secondary soil properties PWP and FC. Addi-
tionally, for the averaged one-dimensional GPR-derived PAW,
the value was near the upper whisker, indicating considerable
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variability beyond the upper quartile. Meanwhile, for SWC at
FC and PWP in the plow layer, the results of the mean semi-
3D were located close to the lower quartile, indicating that the
secondary soil properties might vary substantially between
the two different averaging procedures. As the PAW obtained
from mean semi-3D (of the ensembles curves, as shown in
Figure 5) for the top and subsoil layer but also the FC for
the subsoil layer were closer to the median of the boxplots,
compared to averaged 1D GPR results, one can conclude that
averaging the individual soil hydraulic characteristics and fit-
ting an ensembled new curve to those data yielded better
results as averaging the SWCs beforehand and inverting on
those. Finally, the results revealed that variability in the SHPs
was partly substantial at the different layers and that neglect-
ing this variability might lead to SHPs, which might not be
appropriate to be used in modeling the soil-plant interactions
at different scales, especially at a fine scale.

4 | SUMMARY AND CONCLUSION

In this study, the SHP were estimated using the unimodal and
dual-porosity MvG model. The method relied on time-lapse
200-MHz horizontal ZOP crosshole GPR-derived data, which
were used to determine the SWC over the course of a winter
wheat cropping season.

The results showed that the hydrogeophysical sequential
inversion approach can be used to estimate the SHP reliably
for effective SHP based on averaging the SWCs along the
rhizotubes prior inversion. The results also indicate that the
GPR measurements provide sufficient information details to
estimate the SHP for the plow (topsoil) and subsoil layer,
with the added capability of also estimating the parameters of
dual-porosity soil hydraulic characteristics. Regardless of the
good fit of the modeled SWCs, some discrepancies were still
detectable, where the modeled SWCs showed in general less
variability than the GPR measured ones. To ensure that this
discrepancy was not caused by the method how SWCs were
derived from GPR data (i.e., first arrival time), a synthetic
modeling study was performed, whereby the calibrated model
was utilized in conjunction with gprMax, a three-dimensional
finite difference time domain software (Warren et al., 2016) to
simulate EM of the system. Those EM waves were then ana-
lyzed in the same manner as those measured in the field and
the results indicated that the gathered field GPR data can be
analyzed using standard picking of the first arrival times and
that the absence of sharp gradients in SWC will allow this
simple data analysis as suggested earlier by Yu et al. (2021).

In the next step, a semi-3D sequential inversion of the
SHP was performed, using the individual GPR-derived SWCs
from the different locations along the rhizotubes (N = 61
per rhizotube). The results showed that the calculated SHP
vary across the locations of the rhizotubes. Additionally, the
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obtained semi-3D SHP differ from the SHPs estimated using
the mean GPR-derived SWC along the rhizotubes, as well as
from the calculated mean of the upscaled SHPs. The latter was
obtained by fitting the soil hydraulic properties to the aver-
age SWR function. From the SWR functions for the different
methods used to estimate the SHP (inversion of the averaged
GPR-derived SWCs and inversion of SWC along individual
locations along the rhizotubes or averaging of the latter), fur-
ther soil water characteristics were estimated, including FC,
PWP, and the PAW. The results showed that the different tech-
niques for calculating the SHPs also yield different SWCs at
FC, PWP, and PAW and that averaging SWC prior inversion
will lead to larger differences compared to estimating a mean
set of SHPs based on the ensemble of individually estimated
soil hydraulic characteristics. For future research, we would
recommend analyzing the effect of the different SHP esti-
mated on dynamic root-soil or crop growth models. Another
consideration would be how these small-scale heterogeneities
would impact biogeochemical processes like GHG production
and emissions using an appropriate biogeochemical model.
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Appendix A: Synthetic one-dimensional field study—Different measurement intervals

TABLE A1 Results of the synthetic study.
Lower boundary
Plow layer 0, (cm® cm™3) 0
0, (cm® cm™3) 0.2
a(lcm™) 0.01
n(-) 1.1
K, (cm day™") 180
AG) 4

SHP
Upper boundary Forward GPR days Daily
0.01 0.002 0.006 0.005
0.3 0.25 0.25 0.251
0.1 0.0795 0.0749 0.0763
1.3 1.118 1.122 1.122
200 199.57 190.54 192.06
6 4.59 5.026 5.091

(Continues)
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TABLE A1l

Subsoil layer

(Continued)

LARM ET AL.
SHP
Lower boundary Upper boundary Forward GPR days Daily
0, (cm® cm™) 0 0.01 0.009 0.004 0.005
0, (cm® cm™) 0.35 0.4 0.387 0.388 0.384
a(lecm™) 0.007 0.01 0.0086 0.0087 0.0085
n(-) 1.1 1.4 1.358 1.351 1.352
K, (cm day™!) 140 180 159.52 159.73 162.52
A(-) -1 0 -0.6 —-0.625 —0.498
R? 1.0 0.9990

Note: Comparison of the SHP of the forward model and the synthetic sequential inversion runs. R? is the variation between the synthetic GPR-derived SWC values and

the modeled SWC values.

Abbreviations: GPR, ground penetrating radar; SHP, soil hydraulic parameters.

FIGURE A1
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Appendix B: Correlation between A and K for the upscaling results

(a) Plow layer
T
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FIGURE B1

Correlation between A and K for the semi-3D inversion results, for the plow layer (a) and subsoil layer (b), respectively.
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